一、氦、氩同位素分析在天然气成藏规律研究中的应用——以川西盆地中部天然气He、Ar同位素组成分析为例(论文文献综述)
刘瑞,郭少斌,屈凯旋,郭予斌[1](2021)在《南华北盆地山西组砂岩的气体来源、成岩阶段与成藏过程研究》文中研究说明为了系统深入的研究南华北盆地太康隆起和蚌埠隆起上古生界山西组砂岩的气体来源、成岩阶段与成藏过程,本文采用伊利石的结晶度、流体包裹体岩相学、显微激光拉曼测试技术,结合稀有气体同位素,对砂岩的成岩阶段,致密砂岩气体的成藏过程、气体来源和贡献率进行了详细的研究。砂岩中伊利石结晶度介于0.64~1.06(△2θ)之间,指示早—中成岩阶段;I/S混层中蒙皂石含量范围为0%~50%,指示中成岩阶段A-B期;流体包裹体均一温度分布在110~120℃和130~150℃两个范围内,同样指示中成岩阶段A-B期。综合伊利石的结晶度、I/S混层中蒙皂石含量和古温度三种研究方法,共同界定南华北盆地山西组致密砂岩成岩作用阶段为中成岩阶段A-B期。通过流体包裹体岩相学观察结合显微激光拉曼测试技术,准确确定包裹体的类型、成分和世代关系等,确定油气成藏期次为1期。利用含烃盐水包裹体的均一温度,将之"投影"到附有古地温演化的埋藏史图中,确定山西组致密砂岩气的成藏时间为印支期末期—燕山期早期。利用稀有气体同位素40Ar/36Ar值,计算气源岩年龄,确定山西组致密砂岩中的天然气来自于石炭—二叠纪。按照泥页岩、煤岩二端元混合模型,计算了不同烃源岩产生的天然气对砂岩样品中天然气的贡献率,结果表明南华北盆地山西组致密砂岩中天然气的主力烃源岩为煤系泥页岩,贡献率约为73.5%;煤岩在整个生烃过程中发挥次要作用,贡献率约为26.5%。
赵子龙[2](2020)在《渤中凹陷深层油气运聚成藏机制》文中研究指明油气作为流体矿产,其运聚作用反映其时、空演化的地质过程,是油气成藏理论和勘探目标优选的重要组成部分。渤中凹陷深层油气勘探效果突出,但油气运聚成藏过程研究薄弱。本文试图通过对渤中凹陷多次洼差异性烃源条件下的油气来源,输导体系与流体动力联合作用下的油气运移、成藏过程的研究,旨在探讨渤中凹陷深层油气运聚、成藏机制,以及勘探和目标区优选。立足30余口深层探井、评价井的基础地质资料,选取渤中凹陷西南部深层油气藏作为主要解剖区。通过岩心观察、显微薄片、油/气物性、有机/无机地化等翔实的资料,研究油气来源和深部流体示踪、输导格架发育特征、流体动力恢复与演化,以及优势运移指向,借助流体驱替物理实验和Petro Mod?数值模拟等正演手段,分析油气运聚成藏过程。取得了如下主要认识:渤中凹陷西南部深层油气主要来自富烃深次洼中的主洼、南洼和西南洼烃源岩,层位上以沙河街烃源贡献为主,东营组次之。热膨胀与底辟作用下的构造背景,岩相学组合和有机/无机地化特征,反映深部流体主要源于上地幔深部,略受壳源物质混染,借助深大断裂-裂缝体系,在喜马拉雅期发生以中心式和裂隙式区域喷发活动。渤中凹陷输导体系主要发育有高渗岩体、断层、不整合面和裂缝。多期形成的北北东和近南北向的正平移断裂、北西和北东向共轭走滑断裂,在新构造运动期间得以活化和再发育,为深层流体提供优势运移通道。裂缝主要包括近垂直缝、斜交缝和水平缝。水平缝形成时间要早于近垂直缝,近垂直缝早于斜交缝。多期次构造演化和烃源岩生、排烃增压耦合均有助于裂缝网络的形成。超压成因主要有沉积型超压、生烃增压和断裂引起的压力传递,其中沉积型超压和生烃增压是渤中凹陷超压的主要贡献者。流体动力演化整体表现为油势梯度呈逐渐增大趋势,约5.3Ma以来油势梯度达到最大。渤中凹陷深层油气经历了早油、晚气的混合运移过程,约5.3Ma以来天然气发生规模运聚过程。在流体势梯度驱动下,油气沿着断层-裂缝-高渗岩层-不整合面发生垂向和侧向长距离运聚,形成了“多源汇聚供烃-早油晚气-长距离垂、侧向差异运聚”的油气成藏模式。
杜明洋[3](2020)在《滇东煤层气合采井气水地球化学特征及气层层源判识》文中研究说明本论文以滇东地区恩洪区块和老厂雨汪区块8口煤层气排采井为研究对象,以研究区煤层气地质背景、主采煤层特征和实际排采数据为研究基础,结合主采煤层和煤层气合采井产出气、水的实验室测试结果,分析了各井不同时间段产出流体特征变化规律,揭示了产出流体的总体变化趋势及其产能响应,建立了气水产出层源及其贡献判识模板,实现了煤层气合采井产气层源及其贡献的有效判识。研究区主采煤层埋深区域上呈现周边深中部浅,层域上逐渐加深;厚度区域上一般中部较边缘厚,东北部较西南部厚,层域上均处于全区厚度分布的中等位置;含气量区域上西北部偏核部较高,周边较低,层域上均处于全区中-高位置。研究区煤层气井所产气体以高成熟的干气为主。非烃气体主要以氮气为主(大气成因),二氧化碳次之(有机成因)。随着排采天数的增加,老厂雨汪区块6口井甲烷占比总体呈“斜S”型增加的趋势,并出现两次拐点,第一次拐点出现在排采70天左右,第二次拐点出现在排采170天左右;恩洪区块2口井相比于老厂雨汪区块6口井产出气中甲烷占比较为稳定,随排采时间的变化趋势可看成是“斜S”型的下部分。研究区8口煤层气井产出水中Na+、Cl-、HCO3-浓度较高,K+、Ca2+、Mg2+、SO42-、F-浓度较低。随着排采时间的增加,H-1、H-2、L-1和L-2井产出水为Na-Cl-HCO3型,L-3、L-4、L-5和L-6井产出水为Na-HCO3型。煤层气井产出水中HCO3-和煤层气产量大致呈正相关,当HCO3-浓度超过2500 mg/L时,产气量会发生极大的提升,其中L-4井和L-6井产出水中HCO3-浓度最高分别为3114 mg/L和2569 mg/L,其产气量也最高。H-1、H-2和L-1井产出水同位素值呈现出D偏移特征,L-3、L-4、L-5和L-6井产出水同位素值呈现出O漂移特征,L-2井产出水同位素值则波动于大气降水线的两侧。结合实际产气情况可以推测,当δD小于等于-72.5‰,δ18O小于等于-10.7‰时,对产气较有利。气井产出水微量元素含量随埋深的增加基本呈“波浪形”变化。其中岩石中微量元素随埋深变化,呈现“双波峰”特征,煤层中微量元素含量随埋深变化,呈现“单波峰”特征。埋深700 m大致为岩石或者煤层中微量元素的峰值对应处。通过分析,提出了高产煤层气井产出水微量元素变化的定量表征范围:(1)300μg/L<σY<400μg/L且150μg/L≤σM<180μg/L;(2)500μg/L<σY<650μg/L且100μg/L≤σM<180μg/L。HCO3-浓度较高时δ13CDIC值较重,煤层自身的因素对产出水δ13CDIC值的影响较大。产出水13CDIC值与产气量大致呈正相关,当产出水13CDIC为煤中碳酸盐矿物溶解来源,且δ13CDIC值处于-3‰左右时,产气量较高。主采煤层顶板结构致密,可有效的阻挡煤储层气体流窜,增加了层源气体判识占比可信度。依据主采煤层干酪根类型及干酪根成熟度的不同,将6口排采井分为三类,即L-1为一类(同源不同阶)、L-3和L-5井为一类(同源不同阶),L-2、L-4、L-6井为一类(多源不同阶)。对应上述三类排采井分别构建了煤层气层源判识模板,并结合实际产气数据特征,将排采井按主采煤层进行了产能贡献劈分,量化分析了主采煤层产气随排采时间的动态贡献率,主采煤层产出气体数据在图中分布区域位于成熟度的范围,与主采煤层实测成熟度值基本吻合,证明判识结果可信。结合数值模拟方法,进一步验证了层源判识模板的准确性。
梁霄[4](2020)在《川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究》文中研究表明川西坳陷北段油气勘探具有复杂性、长期性和曲折性特征,是四川盆地油气勘探历史最为悠久的地区之一。川西坳陷北段深层是四川盆地海相油气勘探继川中安岳气田开发投产后的下一个油气重要战略接替区,研究意义十分重要。晚三叠世以来龙门山的隆升与川西前陆盆地的沉降使川西坳陷北段三叠系以深的海相地层具有深埋藏和/或强隆升和/或强改造特征。复杂地质构造背景与深层特性是川西坳陷北段海相油气勘探的关键地质属性。本论文依据地质、地震资料,利用地球化学方法,以早寒武世绵阳-长宁拉张槽与天井山古隆起构造演化研究为基础,完成川西坳陷北段海相油气地质特征分析。对比前陆扩展变形带古油藏成藏破坏序列,揭示川西坳陷北段深层海相油气成藏过程。研究表明:(1)川西坳陷北段早古生代存在绵阳-长宁拉张槽与天井山古隆起两个重要构造单元。早寒武世“绵阳-长宁”拉张槽北段构造特征解析表明川西坳陷北段处于“绵阳-长宁”拉张槽北段中心,是寒武系麦地坪组-筇竹寺组黑色富有机质泥页岩的沉积中心,发育厚度近500m的下寒武统海相碎屑岩地层。寒武纪-奥陶纪之交的构造运动在川西坳陷北段有显着表现,反映为天井山古隆起的形成,是早古生代构造-沉积性质由拉张转向挤压的重要节点;(2)现今川西坳陷北段具有强隆升-深埋藏复杂地质构造背景,并具有相应的分带特性。马角坝断裂是龙门山冲断带北段与川西坳陷北段的分界断裂。(1)号隐伏断裂(灌县-安县断裂)将川西坳陷北段分为北西侧的前陆扩展变形带与南东侧的川西梓潼-剑阁坳陷。构造-埋藏演化史解析表明,前陆扩展变形带晚三叠世后具有典型的中埋藏-强隆升-强变形特征,而川西梓潼-剑阁坳陷主体则具有深埋藏-弱隆升-弱变形特征;(3)根据川西坳陷北段烃源岩展布特征与有机地化指标参数,下寒武统麦地坪组-筇竹寺组是区域深层海相最佳烃源岩。露头及岩心分析表明,川西坳陷北段震旦系-二叠系储集层以白云岩为主。灯影组灯四段、灯二段与栖霞组栖二段因适时的原油充注以及相对稳定的构造环境,使之成为川西坳陷北段深层最佳储集层系。川西坳陷北段具有以断裂-不整合面为核心的垂侧向复合输导系统。川西坳陷北段所具有的深层特性与油裂解后形成的超压特性使川西坳陷北段存在良好的初始静态保存条件,表现为以中下三叠统膏盐岩、下寒武统海相碎屑岩以及上三叠统-侏罗系巨厚陆相碎屑岩为核心的多级封盖特征。(1)号隐伏断裂前缘的双鱼石地区具有良好的油气保存条件;(4)川西坳陷北段古油藏油源示踪首次将灯影组储层沥青纳入比对范畴。天井山构造带及米仓山前缘灯影组储层沥青、寒武系固体沥青脉与稠油油苗、泥盆系平驿铺组稠油、观雾山组储层沥青、栖霞组-茅口组油苗、飞仙关组油苗与侏罗系油砂等不同层系不同相态古油藏有机碳同位素与生物标志化合物指标精细示踪明确古油藏系统均是以下寒武统富有机质黑色泥页岩做为最主要母源,而上二叠统大隆组仅具有微弱补充。“天井山古隆起古油藏系统”的建立与拉张槽(绵阳-长宁)-古隆起(天井山)优势成藏组合对油气的早期聚集效应具有高度耦合关系;(5)川西坳陷北段海相油气具有多样多期成藏特征。川西坳陷北段具有以下寒武统为主的多源供烃、以断裂-不整合面为主的复合输导和以中下三叠统为主的多级封盖等地质特性。根据相应的生储盖组合划分、油源判别与构造期次梳理结果,地质-地球化学成藏模式表明川西坳陷北段深层多样多样多期成藏特征可分为“原生油藏→原生气藏”与“次生油藏→原生气藏”两类。川西坳陷北段深层海相油气有利区分布具有典型的受拉张槽-古隆起和盆山结构联合-复合作用控制。川西坳陷北段主体构造晚期调整微弱,除深层双鱼石-射箭河潜伏构造带中二叠统栖霞组外,绵阳-长宁拉张槽北段东侧下伏灯影组优质储层与下寒武统优质烃源岩具有与川中高石梯-磨溪地区相似的构造-沉积特征,具有形成大型原生气藏的极佳成藏条件。
殷亮亮[5](2020)在《沁水盆地山西组致密砂岩气储层评价与成藏研究》文中提出沁水盆地石炭-二叠系广泛发育煤系地层,具有丰富的天然气资源。当前,沁水盆地天然气勘探的重点是煤层气,已在盆地南部建成千亿立方米规模的大型煤层气田。致密气研究的兴起,源于近年来在多个煤层气区块的勘探开发中,在上古生界多套砂层中发现良好的气测显示,引起了国内专家学者的重视。然而,目前关于沁水盆地上古生界砂岩储层的孔隙结构特征与储层物性控制因素不明确,储层成岩演化过程、致密气气层特征、成藏期次和成藏过程不清楚,限制了该区致密气的勘探。为此,本文基于X-射线衍射、铸体薄片、扫描电镜、高压压汞、有机地球化学、气体吸附、稀有气体检测和流体包裹体等实验分析测试方法,结合岩心、测井、气测和区域地质资料,对沁水盆地下二叠统山西组砂岩储层开展精细评价和致密气成藏特征研究,明确了砂岩储层的孔隙结构特征、储层物性主控因素以及储层成岩演化过程,定量评价了烃源岩的生烃潜力,查明了致密气的成藏过程。主要成果与创新如下:1.山西组砂岩储层储集空间以溶蚀孔、晶间孔和微裂缝为主,原生孔隙基本不发育。储层主要发育纳米级孔隙系统,孔隙直径主要分布于40600 nm之间,以小孔(<0.1 um)为主,其次为中孔(0.11 um),局部发育少量大孔(>1 um)。2.储层喉道直径小,孔隙结构复杂,排驱压力偏高,孔喉连通性不好,储层物性较差,为典型的致密储层。溶蚀作用可以改善储层物性,在局部形成甜点区。储层物性主要受孔隙结构和矿物组成的控制,喉道直径直接控制储层物性,而沉积作用则是控制储层物性的根本因素。3.建立了烃源岩游离气和吸附气计算模型,定量评价了烃源岩对天然气的储集能力。泥岩有较小的生烃能力和较大的储气能力,而煤岩有较大的生烃能力和较小的储气能力,两者的排气量分别为0.6×1012 m3和11.96×1012 m3,计算山西组致密气资源量为0.38×1012m3。4.山西组致密气存在2期成藏,对应的成藏时间分别为中-晚三叠世和晚侏罗世-早白垩世。储层成岩史与气体充注史研究表明,第1期成藏发生于储层致密之前,两者之间的关系为先成藏后致密;第2期成藏发生于储层致密之后,两者之间的关系为先致密后成藏。
刘曾勤[6](2020)在《黔西地区龙潭组致密砂岩储层评价》文中研究说明非常规气(致密砂岩气、页岩气和煤层气)已成为满足全球能源需求中天然气供给的重要组成部分。黔西地区上二叠统龙潭组为海陆过渡相沉积地层,其致密砂岩气的勘探开发前景十分广阔。本文以黔西地区海陆过渡相龙潭组砂岩为研究对象,利用岩芯薄片和扫描电镜观察、X射线衍射成分分析、压汞法、核磁共振实验、流体包裹体分析和稀有气体同位素测量等技术手段,综合分析龙潭组致密砂岩储层的储集空间特征和致密成因机制,确定致密砂岩气体的充注时间和气体来源,从而讨论致密砂岩气潜力。龙潭组砂岩形成于三角洲和潮坪-泻湖沉积环境,属于典型的岩屑砂岩,其成分和结构成熟度较低。龙潭组砂岩典型储层特征包括岩屑和黏土含量高,孔隙度和渗透率非常低,孔隙以微孔为主,束缚水饱和度高。龙潭组砂岩与国内其他大规模开发的致密砂岩(例如,延长组、须家河组和巴什基奇克组砂岩)相比,岩屑成分含量更高,孔喉结构更致密。此外,压汞和核磁数据分析结果显示龙潭组砂岩孔喉分形维数高,表明微观孔喉结构复杂和非均质性强。龙潭组砂岩成岩作用的定性和定量评价表明,成岩综合指数能够表征压实、胶结、溶蚀和构造微裂缝作用对储层孔喉结构的综合影响。龙潭组砂岩的破坏性成岩作用(压实和胶结作用)强,再加上后期的储层建设性改造作用(溶蚀作用和微裂缝)较弱,导致了储层成岩综合指数低和孔喉结构致密。进一步,通过灰色关联法综合分析宏观储层属性、微观孔喉结构、成岩作用强度和非均质性等属性,建立龙潭组储层综合评价指数,确定龙潭组砂岩具有三种不同类型的储层。研究区内龙潭组I类优质储层占比低,II和III类储层分布广。整体上,龙潭组砂岩孔喉结构致密,储层质量差,非均质性强。龙潭组砂岩中发育原生气液、次生盐水和次生气液包裹体,主要成分是甲烷、饱和烃和二氧化碳,说明致密砂岩中存在天然气聚集。包裹体均一温度结合埋藏史和热演化史分析表明龙潭组致密砂岩气为持续充注,主要充注时间发生在晚三叠世。此外,稀有气体元素(氦和氩)含量研究证实龙潭组致密气主要来自泥页岩的贡献,煤层贡献非常小。因此,高成熟度和TOC含量的泥页岩生成的天然气可以充注邻近的致密砂岩层,形成致密气藏。研究区西南部是致密砂岩气开发的潜力区,构造运动破坏性相对较弱,深度相对较浅,砂体厚度大,砂地比高,储层质量较好。垂向上,砂岩与泥岩和煤层相互叠置,致密砂岩气与页岩气和煤层气的合采方式是可行的,从而为黔西地区非常规气勘探找到突破口。
周肖肖[7](2020)在《塔里木盆地塔中地区奥陶系碳酸盐盐岩油气成藏模式研究》文中认为塔中-古城地区奥陶系海相碳酸盐岩含油气丰富,经历了多期构造运动和油气充注及调整改造,油气成藏较为复杂。本文利用最新的地震、测井、地质和地化等资料分析塔中-古城地区奥陶系不同相态烃类分布特征、地化特征、成因及来源、油气藏遭受的次生化学作用。在分析油气藏主控因素及成藏过程的基础上结合前面的分析,总结了塔中和古城地区奥陶系不同相态烃类成藏模式。(1)塔中-古城地区奥陶系油气可划分为古城地区的干气和塔中地区的凝析油、挥发油、正常油。塔中地区平面上“西部富油,东部富气”:西部为“断裂带富气,斜坡区距通源走滑断裂近处富气,远处富油”;东部为“断裂处富气,靠近内带处富油”。纵向上,塔中地区不同层系“深部富气,浅部富油”;同一层系“高部位富气,低部位富油”;沿不整合面分布的特征。古城地区天然气分布于构造斜坡或高部位的断裂发育区,纵向上分布于云化滩储层内。(2)塔中-古城地区奥陶系天然气为成熟-过熟干气,由深部储层寒武系成因的古油藏裂解形成。塔中东部天然气干燥系数、成熟度和气油比明显大于西部;南北向上断裂带处干燥系数较大,北部斜坡区较小。这主要由天然气成因差异和次生作用造成:古城地区过熟干气沿着塔中Ⅰ号断裂向西充注到塔中东部发生混合作用,使得塔中东部天然气干燥系数和成熟度明显高于西部;北部斜坡区的西部分布有相对低熟源岩,生成的干酪根裂解气与深部原油裂解气共存,断裂带以深部原油裂解气为主。H2S为CIP离子驱动的TSR作用启动阶段的产物。西部地区地层水Mg2+和矿化度较东部高,TSR反应更易发生,H2S含量较东部偏高。塔中-古城地区CO2和N2均为源岩有机质热降解成因。(3)基于黄金管热模拟实验重新厘定了油源对比指标:芳基类化合物、碳和硫同位素。对比分析认为寒武系烃源岩为主力源岩。塔中东部地区原油密度、粘度、含蜡量等明显大于西部,全油碳同位素以及成熟度则小于西部。断裂带处原油密度、粘度较低,斜坡区稍大。原油性质差异主要由寒武系源岩在塔中东西部成熟度差异造成,西部源岩埋深超东部近千米,造成西部原油成熟度偏高,密度和粘度偏低。断裂带处原油物性除了与高熟源岩有关外,气侵等作用也会造成原油密度、粘度等减小。(4)塔中地区奥陶系烃类相态受源岩成熟度、次生作用和多期油气充注的影响:源岩成熟度和多期充注对斜坡区油气相态影响大;奥陶系顶部构造高部位生物降解相对强烈;TSR作用能降低油裂解门限温度且加速热裂解作用的进行;奥陶系储层温度相对较低,原油热裂解程度有限,寒武系原油裂解程度明显大于奥陶系原油。气侵作用在塔中地区较为重要,断裂区强度较大。塔中西部以深部原油裂解气垂向气侵为主,东部以古城地区过熟天然气侧向气侵为主。(5)晚加里东期,来自寒武系的原油运移至塔中-古城等成藏。海西早期,构造运动导致塔中地区古油藏遭受破坏;位于斜坡部位的古城地区油气藏遭受较低程度破坏。海西晚期,塔中地区源岩再次深埋生油,油气经断裂垂向运移至目的层,通过不整合等输导体系侧向运移至优质储层内,在致密盖层和隔夹层的封盖作用下,多层系成藏;古城地区源岩处于过熟阶段,聚集少量的油气。喜山期,塔中地区寒武系油裂解气沿断层向上充注到目的层形成凝析气等,古城地区原油裂解气也沿着Ⅰ号断裂运移至塔中东部形成凝析气藏;古城地区深部裂解气或保存至寒武系或运移至目的层形成干气藏。塔中地区分为油藏(正常油和挥发油)与气侵改造型凝析气藏2类成藏模式。油藏分布于西部斜坡区、中部远离通源断裂处、东部内带区;凝析气藏分布于通源断裂处,根据气侵方式差异分为西部垂向气侵改造和东部侧向气侵改造2种成藏模式。古城地区为原油裂解气在走滑断裂和盖层作用下聚集成藏模式。
章顺利[8](2020)在《四川盆地中西部上三叠统须家河组二段孔隙型致密砂岩储层特征与形成机理》文中研究表明四川盆地上三叠统须家河组具有丰富的天然气资源和优越的成藏条件。由于其储集层埋深大、超致密、非均质性较强等致使勘探难度大。在须家河组二段(须二段)发现储量最多,但投入规模开发少,早期对须二段储层的研究主要集中在裂缝型储层认识上,但近年来,在川西、川中等地区须二段钻井中均发现了孔隙型储层(包含孔隙型和裂缝~孔隙型),具有聚集较大规模储量和气井稳产潜力。因此,弄清须二段致密砂岩中孔隙型储层的基本地质特征和形成机理,对须家河组油气勘探开发具有重要意义。本文调研了国内外大量相关文献和前人研究成果,根据区内钻井、测井、岩心和测试实验等资料分析了研究区须二段致密砂岩的沉积微相特征、储集性特征,并定义了孔隙型储层。在此分析基础上,对孔隙型储层基本地质特征、储层微观特征和地球化学特征等进行了深入研究,探讨了孔隙型储层的演化和形成机理,总结了孔隙型储层主控因素、发育模式和勘探方向。主要研究成果如下:(1)前陆拗陷带新场地区和前陆隆起带合川、潼南地区须二段砂岩以辫状河三角洲前缘水下分流河道和河口坝沉积微相为主;前陆斜坡带金华、秋林和中台地区须二段砂岩以河口坝和远砂坝沉积微相为主,不发育分流河道。针对研究区须二段致密砂岩储集性特征,前陆拗陷带物性较差,储集空间以粒内溶孔为主;前陆斜坡带物性中等,储集空间以粒内溶孔为主,但含少量的残余原生孔隙;前陆隆起带物性较好,储集空间以残余原生孔和粒间溶蚀扩大孔为主。确定了研究区不同构造带的储层分类评价标准,将各构造带须二段储层分类评价中为I类、II类和III类的孔隙型、裂缝~孔隙型储层统称为广义上的孔隙型储层,其中前陆拗陷带、前陆斜坡带和前陆隆起带孔隙型储层孔隙度下限值分别为4%、5.5%和6%。(2)通过铸体薄片观察、扫描电镜等分析方法对须二段孔隙型储层基本地质特征进行了分析。前陆拗陷带以岩屑砂岩、岩屑石英砂岩和长石岩屑砂岩为主,成岩作用主要为压实压溶作用和自生石英胶结作用,成岩阶段进入了晚成岩期;前陆斜坡带和前陆隆起带岩石类型以长石岩屑砂岩为主,前陆斜坡带成岩作用主要为压实作用和溶蚀作用,成岩阶段进入了中成岩B期;前陆隆起带成岩作用主要为包壳、衬垫绿泥石胶结作用和溶蚀作用,成岩阶段已达中成岩B期,部分处在中成岩A期。根据孔隙型储层主要特征与发育成因,划分为烃类充注+绿泥石+溶蚀+裂缝型、烃类充注+绿泥石+溶蚀型、裂缝+溶蚀型3类。(3)定时定量反演了研究区各构造带须二段不同类型孔隙型储层的孔隙演化特征。前陆拗陷带压实减孔量和胶结减孔量较大,初始孔隙度下降较快,晚三叠世和早侏罗世的溶蚀增孔对孔隙有极大提升,到晚侏罗世储层致密化;前陆斜坡带也经历了相对较强的压实和硅质胶结减孔,但中侏罗世溶蚀增孔量最大,到早白垩世储层致密化;前陆隆起带经历了包壳、衬垫绿泥石和早期石英加大对孔隙的保持性作用,初始孔隙度下降最慢,晚侏罗世有机酸溶蚀作用增加了部分孔隙,到晚白垩世储层致密化。各构造带储层致密化时间均晚于油气开始大量充注时期。(4)通过埋藏史、扫描电镜、能谱、X-衍射、石英氧同位素、方解石碳氧同位素和电子探针等宏观和微观地球化学特征分析了孔隙型储层的形成机理和成岩流体演化特征。须二段孔隙型储层形成的重要机制包括早期缓慢埋藏方式和较低地温梯度下的缓慢压实作用;早期烃类充注,早期包壳、衬垫绿泥石,早期石英加大对孔隙的保持性作用和相对深埋藏条件下有机酸溶蚀作用。须二段孔隙型致密砂岩储层先后经历了(浅埋藏)酸性成岩环境→(浅埋藏)碱性成岩环境→(有机酸进入)酸性成岩环境→(深埋藏)碱性成岩环境。(5)总结了研究区须二段孔隙型储层主控因素、发育模式和勘探方向。前陆拗陷带砂体和烃源最为发育,储层发育的主控因素为碎屑成分、溶蚀作用和裂缝,在寻找孔隙型储层时应注重于晚三叠世末期和早侏罗世溶蚀期的断层和烃源岩配置关系;前陆斜坡带本身烃源较为发育,且紧邻川西前陆拗陷带生烃中心,砂体也较为发育,主控因素为碎屑成分、溶蚀作用、古构造和裂缝,在寻找孔隙型储层时应注重于中-晚侏罗世溶蚀期和生烃期的古隆起,叠加上断层裂缝;前陆隆起带长期处于隆起的相对高部位或斜坡部位,烃源差于拗陷带和斜坡带,砂岩相对发育较少,储层发育的主控因素为碎屑成分、沉积微相和裂缝,在寻找孔隙型储层时应注重于高能沉积微相,叠加上雷顶古残丘差异性压实作用形成的裂缝。
张鑫[9](2020)在《泌阳凹陷油气成藏过程及勘探潜力分析》文中研究指明泌阳凹陷处于河南泌阳县和唐河县之间,面积为1000 km2,作为南襄盆地中一个相对独立的断陷构造单元,属于叠加于东秦岭造山带之上的晚中生代-新生代“后造山期”断陷-拗陷型盆地,可划分为南部陡坡带、中央深凹带及北部斜坡带三个构造单元。论文在充分消化吸收前人对泌阳凹陷古近系构造演化、沉积体系、烃源岩及储层特征和分布以及油气成藏等研究成果基础上,通过岩心观察、稳定碳氧同位素分析、流体包裹体系统分析等研究,厘定了成岩类型及成岩序次或成岩序列,并依据不同岩相及不同产状包裹体荧光颜色和荧光光谱,确定成熟度及生排烃幕次,并初步确定充注幕次;根据盆地埋藏史及热史模拟结果分析,结合油包裹体及其所伴生的同期盐水包裹体均一温度及盐度,确定较为准确的油气充注年龄;通过现今地层压力刻画及古流体压力模拟,基本弄清了作为油气运移充注原动力的古今地层压力特点及分布;在不同成藏动力系统油源对比的基础上,根据生排烃过程、古流体压力演化及油气充注过程等特点,深入分析了泌阳凹陷油气动态成藏过程中的源汇耦合关系,建立了油气成藏模式,进而探讨了泌阳凹陷的勘探潜力,并对有利的勘探区域进行了预测。通过研究所取得的成果认识如下:通过烃源岩和砂岩储层样品透射光、荧光和冷阴极发光分析,并结合茜素红染色片观察、SEM+微区能谱元素分析及稳定O-C同位素组成分析,厘定了泌阳凹陷的成岩过程,认为核桃园组沉积时期为封闭性的咸化湖泊,经历了早成岩、埋藏A、B及C阶段Fe-方解石、方解石胶结、Fe-白云石胶结、石英次生加大边形成,以及长石局部溶蚀和石英颗粒及次生加大边碱性溶蚀等“酸-碱交替”溶蚀过程。在成岩分析的基础上,通过流体包裹体的岩相学和显微荧光观察,确定了不同成熟度的四幕生排烃及不同构造单元的“四幕油和一幕天然气”充注,其中第一幕充注低熟油,第二-第四幕充注成熟度相当。根据油包裹体及所伴生的同期盐水包裹体均一温度及盐度,并结合盆地模拟的埋藏史及热史结果,厘定了凹陷油气充注年龄,进而结合泌阳凹陷构造演化史,确定凹陷两期油气充注成藏过程,第一期发生于主裂陷期阶段,包括第一幕(36.1~23.5Ma)、第二幕(34.1~21.2Ma)和第三幕(30.9~16.2Ma)成藏,具有多阶连续性充注特点;第二期发生于拗陷期阶段,即第四幕油(7.9~0.2Ma)和一幕天然气成藏(3.0~0.8Ma)。利用钻井实测压力资料和重复地层压力测试等资料,以及二维地震速度谱资料对现今地层压力进行刻画,认为泌阳凹陷大仓房组及核桃园组发育中低超压,并且存在正常地层压力带、超压过渡带及三个超压带复杂的地层压力系统;运用盆地模拟法和古流体包裹体法对古压力进行模拟,结果表明泌阳凹陷大仓房组顶部在距今39.30Ma已经形成两个超压中心,至32.99Ma时期,基本已拓展形成一个超压体系,但下二门地区超压明显较周围强,直至距今10.5Ma,下二门地区较强超压区基本消失,形成单一超压中心。而核三下段古压力在距今39.30Ma前开始聚集,距今32.99Ma开始发育中-低幅异常超压(以压力系数1.2为界),并且形成双超压中心,但下二门地区超强较弱,距今28.94开始两个超压中心向盆地中心扩展,形成一个统一的超压体系,至距今23.03Ma达到超压最大,随后无论发生泄压还是泄压-增压,地层压力始终保持超压直至现今。通过泌阳凹陷油源对比发现,泌阳凹陷深凹区核三段及核二段烃源岩为本区同层位油气提供油源,而南北斜坡核三上段及核二段原油来自深凹区同层位烃源岩,而核三下段原油来自本地同层位烃源岩;泌页1井生排烃过程分析表明,烃源岩在大约37Ma进入生烃门限,所发现的橙黄色荧光的油包裹体就是最好的例证;而在32Ma处进入中成熟阶段,23.03Ma达到生烃高峰,其中所发现两幕中成熟的油包裹体表明排烃过程的存在。从模拟剖面来看,深凹区核二段的下部地层已进入生烃门限,生成低熟油;而深凹区和陡坡区整个核三段进入生烃门限,核三上段处于低-中成熟阶段,核三下段处于中-高成熟阶段;仅在西部和北部表现为低成熟阶段。泌阳凹陷地层超压为油气运移充注连续性成藏持续提供原动力。凹陷所持续存在的地层超压所造成的剩余压力,以及浮力及毛细管力等的复合作用使得生烃深凹区流体势增强,油气能够持续从烃源区的高流体势区向凹陷斜坡区及凹陷低流体势区运移;而构造-沉积古地貌及其所控制的张厂及侯庄三角洲沉积体系砂体及“古城-赵凹”走滑断裂多种优势输导通道,以及砂体-断裂立体高效复合输导体系的存在及展布,保证油气高效输导多幕充注成藏。通过油源对比、烃源岩生排烃过程、运移输导充注过程及圈闭形成等综合分析,发现泌阳凹陷生排烃阶段(39.0~37.0Ma→23.03Ma→0.2Ma)与古流体压力演化过程中超压的形成与演化(39.30 Ma→32.99 Ma→23.03 Ma→0 Ma)较为一致,保证了油气的运移的原动力,并且地层超压及浮力和毛管压力所造成的流体势使得油气从深凹区的高流体势区向南北两侧的低流体势区运移;并且存在张厂及侯庄三角洲砂体及“古城-赵凹”走滑断裂优势输导多通道,以及砂体-断层立体复合输导体系,保证了油气的高效运移输导,并对前期或同期所形成的不同类型圈闭进行充注。由于以上过程的相互耦合,使得泌阳凹陷能够发生多期多幕连续成藏,即第一成藏期第一-第三幕(37.2~16.2Ma)三幕油充注成藏,以及第二成藏期第四幕油及一幕天然气(7.9~0.2Ma)充注成藏。通过动态成藏过程剖析,结合泌阳凹陷油气分布特征及地区性差异分析,探讨了泌阳凹陷勘探潜力,并预测了凹陷的有利油气勘探区域,认为泌阳凹陷深凹区及深层系为大仓房组及核三下段泥页岩油气有利潜力区,以及岩性油气藏及构造岩性油气藏潜力区;而凹陷北部的张厂及侯庄古低槽区域及其周缘地区为深层构造油气藏及构造-岩性油气藏有利潜力区,这些必将成为泌阳凹陷下一步重点勘探新领域区。
李建威,赵新福,邓晓东,谭俊,胡浩,张东阳,李占轲,李欢,荣辉,杨梅珍,曹康,靳晓野,隋吉祥,俎波,昌佳,吴亚飞,文广,赵少瑞[10](2019)在《新中国成立以来中国矿床学研究若干重要进展》文中指出新中国成立70年来,中国的矿产资源勘查取得了一系列重大进展,发现了数百个大型超大型矿床,形成16个重要成矿带.这些找矿重大发现为系统开展矿床成因研究、构建矿床模式、总结区域成矿规律和创新成矿理论提供了重要条件.中国的矿床学研究和发展大致可以划分为三个阶段,分别是新中国成立之初至20世纪70年代末,改革开放初期至20世纪末,以及21世纪之初到现在.论文首先概述了上述三个历史时期中国矿床学发展的特点和主要研究进展.早期的矿床学研究与生产实际紧密结合,重点关注矿床的地质特征和矿床分类.这一时期虽然研究条件落后,但学术思想活跃,提出了一系列创新的学术观点,建立了多个有重要影响的矿床模式,同时开始将成矿实验引入矿床形成机理的探讨.第二个阶段的一个显着特点是各种地球化学理论与方法被广泛应用于矿床学的研究,大大促进了对成矿作用过程和成矿机制的理解,并在分散元素成矿理论和超大型矿床研究方面取得了重大进展和突破,同时将板块构造引入各类矿床成矿环境和时空分布规律的研究.第三个阶段是中国矿床学与世界矿床学全面接轨并实现成矿理论系统创新的时期.这一时期各种先进的实验分析技术有力支撑了矿床成因的研究,深刻揭示了地幔柱活动、克拉通化、克拉通破坏、大陆裂谷作用、多块体拼合、大陆碰撞等重大地质事件与大规模成矿作用的耦合关系,并在大陆碰撞成矿、大面积低温成矿作用等重大科学问题的研究上取得了原创性成果,产生了重要的国际影响.论文概述了16类重要矿床类型的代表性研究进展,重点介绍了大塘坡式锰矿、大冶式铁矿、铜陵狮子山式铜矿、玢岩型铁矿、铁氧化物-铜-金(IOCG)矿床和石英脉型钨矿的成矿模式,分析了若干重大地质事件的成矿效应,总结了元素地球化学、稳定同位素地球化学、同位素年代学、流体包裹体分析、成矿实验、矿田构造等研究方法对推动中国矿床学发展所起的作用.文章最后简要分析了今后中国矿床学研究的发展趋势和重要研究方向,认为深部成矿作用规律、关键金属元素富集机理、非常规矿产资源、重大地质事件与成矿、超大型矿床等是今后矿床学的重点研究内容,提出要创新矿床学研究方法,加强跨学科交叉研究,使中国的矿床学能逐渐引领世界矿床学的研究,服务矿产资源国家重大需求.
二、氦、氩同位素分析在天然气成藏规律研究中的应用——以川西盆地中部天然气He、Ar同位素组成分析为例(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、氦、氩同位素分析在天然气成藏规律研究中的应用——以川西盆地中部天然气He、Ar同位素组成分析为例(论文提纲范文)
(2)渤中凹陷深层油气运聚成藏机制(论文提纲范文)
摘要 |
Abstract |
第一章 引言 |
1.1 选题依据及意义 |
1.1.1 题目来源 |
1.1.2 选题目的及意义 |
1.2 国内外研究现状及存在问题 |
1.2.1 油气来源与深部流体 |
1.2.2 输导体系 |
1.2.3 流体动力 |
1.2.4 成藏模式 |
1.3 主要研究内容与技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究思路与技术路线 |
1.4 完成的主要工作量 |
1.5 主要认识与创新点 |
1.5.1 主要认识 |
1.5.2 主要创新点 |
第二章 研究区地质概况 |
2.1 构造背景 |
2.2 地层特征 |
2.3 油气地质特征 |
2.3.1 烃源岩 |
2.3.2 储集层 |
2.3.3 盖层 |
2.3.4 分布层位与油气藏类型 |
2.4 小结 |
第三章 油气来源与深部流体示踪 |
3.1 油气来源 |
3.1.1 油气组分与热成熟度 |
3.1.2 天然气成因 |
3.1.3 不同构造油源对比 |
3.2 深部流体示踪 |
3.2.1 岩相组合特征 |
3.2.2 地球化学特征 |
3.2.3 深部流体活动模式 |
3.3 小结 |
第四章 输导体系发育特征 |
4.1 输导体系 |
4.1.1 高渗岩体 |
4.1.2 断层 |
4.1.3 不整合面 |
4.2 断裂演化与形成机制 |
4.2.1 断裂演化 |
4.2.2 形成机制 |
4.3 裂缝类型与形成机制 |
4.3.1 裂缝类型 |
4.3.2 发育期次 |
4.3.3 形成机制 |
4.4 输导体系对油气运聚成藏的影响 |
4.5 小结 |
第五章 流体动力恢复与演化特征 |
5.1 现今温压特征与超压成因 |
5.1.1 温度特征 |
5.1.2 压力特征 |
5.1.3 超压成因 |
5.2 古压力场恢复 |
5.2.1 流体包裹体恢复古压力 |
5.2.2 盆地模拟参数准备与选取 |
5.2.3 模拟结果有效性验证 |
5.3 流体动力场演化 |
5.3.1 垂向上流体动力场演化 |
5.3.2 平面上流体动力场演化 |
5.4 流体动力对油气运聚成藏的影响 |
5.4.1 泥岩压实计算的剩余压力对油气运聚的影响 |
5.4.2 数值模拟的剩余压力对油气运聚的影响 |
5.5 小结 |
第六章 油气运聚过程与成藏机理 |
6.1 输导体系与流体动力联合控制下的油气运聚成藏过程 |
6.1.1 充注时间 |
6.1.2 运移方向 |
6.1.3 优势运聚区域 |
6.2 地化指标约束下的原油优势运聚指向 |
6.2.1 饱和烃生标参数约束下的原油优势运聚指向 |
6.2.2 原油含氮化合物约束下的原油优势运聚指向 |
6.2.3 油包裹体定量荧光参数约束下的原油优势运聚指向 |
6.3 深层油气成藏过程 |
6.3.1 油气充注历史 |
6.3.2 流体驱替实验 |
6.3.3 油气成藏模式 |
6.4 小结 |
结论与认识 |
参考文献 |
攻读博士学位期间取得的科研成果 |
致谢 |
(3)滇东煤层气合采井气水地球化学特征及气层层源判识(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 选题背景及意义 |
1.2 国内外研究现状 |
1.3 研究内容和研究方案 |
1.4 论文工作量 |
2 研究区煤层气地质概况 |
2.1 研究区地理及交通位置 |
2.2 地质构造特征 |
2.3 含煤地层和煤层 |
2.4 水文地质条件 |
2.5 煤层气井开发状况 |
2.6 小结 |
3 煤层气合采井产出气地球化学特征 |
3.1 煤层气化学组成及变化特征 |
3.2 稳定碳氢同位素及变化特征 |
3.3 稀有气体同位素及变化特征 |
3.4 小结 |
4 煤层气合采井产出水地球化学特征 |
4.1 产出水中常规离子变化特征及产能响应 |
4.2 产出水中氢氧同位素变化特征及产能响应 |
4.3 产出水中微量元素变化特征及产能响应 |
4.4 产出水中溶解无机碳变化特征及产能响应 |
4.5 小结 |
5 煤层气合采井产出气体层源综合定量判识 |
5.1 混源气存在的普遍性 |
5.2 混源气体综合定量判识思路及流程 |
5.3 混源气定量判识实例分析 |
5.4 小结 |
6 结论及创新点 |
6.1 结论 |
6.2 创新点 |
参考文献 |
作者简历 |
学位论文数据集 |
(4)川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 选题依据及研究意义 |
1.2 研究现状 |
1.2.1 川西坳陷北段构造-沉积演化研究现状 |
1.2.2 川西坳陷北段古油藏-油气显示研究现状 |
1.2.3 川西坳陷北段油气地质条件研究现状 |
1.2.4 川西坳陷北段海相烃源岩研究现状 |
1.2.5 存在的主要问题 |
1.3 主要研究内容及思路 |
1.3.1 研究内容 |
1.3.2 技术路线 |
1.4 完成的主要工作量 |
1.5 取得的主要成果和创新点 |
1.5.1 主要成果 |
1.5.2 创新点 |
第2章 早古生代川西坳陷北段构造-沉积格局 |
2.1 川西坳陷北段晚三叠世前构造-沉积背景 |
2.1.1 前寒武纪 |
2.1.2 寒武纪-志留纪 |
2.1.3 泥盆纪-石炭纪 |
2.1.4 二叠纪 |
2.1.5 三叠纪 |
2.2 绵阳-拉张槽北段构造特征 |
2.2.1 早寒武世“绵阳-长宁”拉张槽的发现与提出 |
2.2.2 绵阳-长宁拉张槽北段东侧特征 |
2.3 天井山古隆起形成与演化过程 |
2.3.1 天井山古隆起区地层接触关系 |
2.3.2 早古生代拉张-挤压构造性质转变 |
第3章 深层海相油气地质特征 |
3.1 以下寒武统为主的多源供烃 |
3.1.1 样品与实验方法 |
3.1.2 川西坳陷北段烃源岩层系展布特征 |
3.1.3 下寒武统烃源岩 |
3.1.4 川西坳陷北段烃源岩有机地化特征比对 |
3.2 川西北地区灯影组、栖霞组优质储层特征 |
3.2.1 多层系储层宏观特征 |
3.2.2 震旦系灯影组储层特征 |
3.2.3 中二叠统栖霞组优质储层特征 |
3.3 复合输导系统特征 |
3.3.1 不整合面输导系统 |
3.3.2 断裂系统特征 |
3.4 晚三叠世后复杂构造背景与油气保存条件 |
3.4.1 深埋藏-强隆升构造特征 |
3.4.2 中下三叠统膏盐岩厚度与流体封隔效应 |
3.4.3 深埋藏-强隆升背景下油气保存条件评价 |
第4章 多层系多相态古油藏油源示踪 |
4.1 川西坳陷北段古油藏分布 |
4.2 寒武系-侏罗系古油藏有机地球化学特征 |
4.2.1 厚坝-青林口侏罗系油砂、稠油 |
4.2.2 天井山地区泥盆系古油藏 |
4.2.3 矿山梁-碾子坝背斜及前缘多层系多相态古油藏 |
4.3 古油藏油源示踪 |
4.3.1 灯影组储层沥青的地化指示意义 |
4.3.2 δ~(13)C同位素特征 |
4.3.3 生物标志化合物特征 |
第5章 深层海相油气成藏过程 |
5.1 川西坳陷北段多样多期成藏特征 |
5.1.1 川西坳陷北段成藏类型判别 |
5.1.2 古油藏的形成与调整 |
5.1.3 古油藏-现今气藏四中心耦合成藏过程 |
5.2 构造演化格局与油气地质意义 |
5.2.1 拉张槽与生烃中心 |
5.2.2 拉张槽-古隆起-盆山结构与油气地质意义 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得的学术成果 |
(5)沁水盆地山西组致密砂岩气储层评价与成藏研究(论文提纲范文)
中文摘要 |
abstract |
第1章 引言 |
1.1 选题依据与意义 |
1.2 国内外研究现状 |
1.2.1 致密气的定义 |
1.2.2 致密砂岩储层评价研究现状 |
1.2.3 致密气成藏特征研究现状 |
1.2.4 沁水盆地致密气研究现状 |
1.3 研究内容 |
1.4 研究思路与技术路线 |
1.5 完成的主要工作 |
1.6 主要成果认识与创新点 |
1.6.1 主要成果认识 |
1.6.2 论文创新点 |
第2章 区域地质概况 |
2.1 地质概述 |
2.2 构造演化 |
2.3 地层特征 |
2.3.1 区域地层发育 |
2.3.2 山西组地层对比 |
第3章 山西组沉积相展布 |
3.1 沉积背景 |
3.2 沉积相标志 |
3.2.1 岩心相标志 |
3.2.2 测井相标志 |
3.3 沉积相划分 |
3.4 沉积相特征 |
3.4.1 沉积参数平面分布 |
3.4.2 沉积相平面展布 |
第4章 储层特征及控制因素分析 |
4.1 储层基本特征 |
4.1.1 岩石学特征 |
4.1.2 物性 |
4.1.3 孔隙类型 |
4.2 储层孔隙结构 |
4.2.1 高压压汞分析 |
4.2.2 孔径曲线分布 |
4.2.3 核磁共振实验 |
4.2.4 孔隙分形特征 |
4.2.5 孔隙结构影响因素 |
4.3 储层成岩演化过程 |
4.3.1 成岩作用类型 |
4.3.2 成岩作用演化序列 |
4.4 储层物性控制因素及储层分类评价标准 |
4.4.1 沉积作用的影响 |
4.4.2 成岩作用的影响 |
4.4.3 孔隙结构的影响 |
4.4.4 微裂缝的影响 |
4.4.5 储层分类评价标准 |
第5章 烃源岩条件 |
5.1 烃源岩有机地球化学特征 |
5.1.1 有机质丰度 |
5.1.2 有机质类型 |
5.1.3 有机质成熟度 |
5.2 烃源岩分布 |
5.3 烃源岩生烃潜力 |
5.3.1 烃源岩生烃史 |
5.3.2 烃源岩生烃强度 |
5.4 致密气资源量估算 |
5.4.1 资源量计算方法 |
5.4.2 烃源岩储气能力评价 |
5.4.3 致密气资源量 |
5.5 致密气主力气源岩探讨 |
第6章 致密气成藏特征 |
6.1 致密气气层特征 |
6.1.1 气层的识别 |
6.1.2 气层的空间分布 |
6.2 致密气成藏期次 |
6.2.1 盆地埋藏-热演化史 |
6.2.2 流体包裹体显微特征 |
6.2.3 流体包裹体均一温度 |
6.2.4 天然气充注期次及时间 |
6.3 致密气成藏过程分析 |
6.4 致密气成藏控制因素分析 |
6.4.1 烃源岩的控制作用 |
6.4.2 储层的控制作用 |
6.4.3 盖层的控制作用 |
6.5 致密气成藏模式 |
第7章 结论与认识 |
致谢 |
参考文献 |
附录 |
(6)黔西地区龙潭组致密砂岩储层评价(论文提纲范文)
中文摘要 |
abstract |
1 引言 |
1.1 选题背景和意义 |
1.2 国内外研究现状及存在问题 |
1.3 研究内容及方法 |
1.4 技术路线 |
1.5 完成主要工作量 |
1.6 主要成果及创新点 |
2 黔西地区地质概况 |
2.1 构造特征 |
2.2 地层及沉积特征 |
3 黔西地区龙潭组沉积特征 |
3.1 龙潭组沉积背景 |
3.2 露头和井资料 |
3.3 沉积相类型及特征 |
3.4 单井和连井相特征 |
3.5 砂岩平面展布特征 |
3.6 沉积相平面展布特征 |
3.7 小结 |
4 黔西地区龙潭组致密砂岩储层表征 |
4.1 砂岩样品和实验方法 |
4.2 储层岩石学特征 |
4.3 储层物性特征 |
4.4 储集空间类型 |
4.5 孔喉结构表征 |
4.6 孔喉分形表征 |
4.7 小结 |
5 黔西地区龙潭组致密砂岩成岩作用定性和定量表征 |
5.1 成岩作用对孔喉结构的影响 |
5.2 成岩作用阶段 |
5.3 成岩作用综合评价 |
5.4 小结 |
6 黔西地区龙潭组致密砂岩综合评价 |
6.1 储层质量评价 |
6.2 储层综合分类 |
6.3 小结 |
7 黔西地区龙潭组致密砂岩气体来源探讨 |
7.1 龙潭组致密砂岩气概况 |
7.2 测试样品和实验方法 |
7.3 致密砂岩气充注历史 |
7.4 致密砂岩气来源 |
7.5 致密砂岩气潜力讨论 |
7.6 小结 |
8 结论 |
致谢 |
参考文献 |
附录 |
(7)塔里木盆地塔中地区奥陶系碳酸盐盐岩油气成藏模式研究(论文提纲范文)
摘要 |
ABSTRACT |
创新点 |
第1章 绪论 |
1.1 选题的来源、目的及意义 |
1.1.1 选题的来源 |
1.1.2 选题的目的及意义 |
1.2 国内外研究现状及存在的问题 |
1.2.1 油气相态研究及控制因素 |
1.2.2 油气源对比 |
1.2.3 油气成藏主控因素 |
1.2.4 存在的问题 |
1.3 研究内容、方法及技术路线 |
1.3.1 研究内容 |
1.3.2 研究思路及技术路线 |
1.4 完成的工作量及创新点 |
1.4.1 资料收集与整理 |
1.4.2 取样及实验 |
1.4.3 图件编制与文章发表 |
1.4.4 主要成果及认识 |
第2章 区域地质概况 |
2.1 研究区分布 |
2.1.1 研究区概况 |
2.1.2 地层特征 |
2.1.3 构造演化特征 |
2.1.4 断裂特征 |
2.2 油气地质特征 |
2.2.1 烃源岩特征 |
2.2.2 储盖组合特征 |
2.2.3 油气藏分布 |
第3章 烃类相态分类及特征 |
3.1 烃类相态分类 |
3.2 不同相态烃类分布特征 |
3.2.1 平面分布特征 |
3.2.2 纵向分布特征 |
3.3 原油物性特征 |
3.3.1 原油族组分及物性分布特征 |
3.3.2 原油碳同位素分布特征 |
3.3.3 原油轻烃及气相色谱特征 |
3.3.4 原油饱和烃色谱-质谱特征 |
3.3.5 原油芳烃色谱-质谱特征 |
3.4 天然气物性特征 |
3.4.1 不同区域天然气组分特征 |
3.4.2 不同层位天然气组分特征 |
3.4.3 天然气碳同位素特征 |
3.5 地层水物性特征 |
3.5.1 地层水组成特征 |
3.5.2 地层水分布特征 |
第4章 油气成因及来源 |
4.1 古城地区天然气成因及来源 |
4.1.1 天然气组分特征 |
4.1.2 天然气碳同位素特征 |
4.1.3 基于地化分析天然气成因与来源 |
4.1.4 基于地质特征分析天然气成因与来源 |
4.2 塔中地区原油来源 |
4.2.1 模拟实验 |
4.2.2 重新厘定油源对比指标 |
4.3 塔中地区天然气成因及来源 |
4.3.1 烃类气体来源 |
4.3.2 非烃气体来源 |
第5章 油气相态影响因素 |
5.1 烃源岩类型及热演化 |
5.2 气侵作用 |
5.2.1 气侵作用的识别及定量 |
5.2.2 油气性质对气侵作用的响应 |
5.2.3 东西部气侵作用差异 |
5.2.4 气侵来源 |
5.3 生物降解作用 |
5.4 原油裂解和TSR作用 |
5.5 油气充注期次 |
5.5.1 塔中地区油气充注期次 |
5.5.2 古城地区油气充注期次 |
第6章 油气分布主控因素 |
6.1 油气垂向运移影响因素 |
6.1.1 塔中地区断裂 |
6.1.2 古城地区断裂 |
6.1.3 盖层 |
6.2 油气侧向运移影响因素 |
6.2.1 塔中地区油气侧向运移 |
6.2.2 古城地区油气侧向运移 |
6.3 储层对油气分布影响 |
6.3.1 塔中地区储层 |
6.3.2 古城地区储层 |
6.4 油气成藏过程 |
6.5 油气成藏模式 |
6.5.1 塔中地区油气成藏模式 |
6.5.2 古城地区油气成藏模式 |
第7章 结论 |
参考文献 |
致谢 |
个人简历、在学期间发表的学术论文及研究成果 |
学位论文数据集 |
(8)四川盆地中西部上三叠统须家河组二段孔隙型致密砂岩储层特征与形成机理(论文提纲范文)
摘要 |
Abstract |
第1章 引言 |
1.1 选题目的及意义 |
1.2 致密砂岩勘探开发现状 |
1.3 致密砂岩储层研究现状及存在问题 |
1.3.1 国内外致密砂岩储层形成机理研究现状 |
1.3.2 研究区须家河组致密砂岩研究现状 |
1.3.3 研究区须家河组研究存在的主要问题 |
1.4 主要研究内容 |
1.5 研究思路和技术路线 |
1.6 完成的主要工作量 |
1.7 取得的主要研究成果 |
1.8 论文的主要创新点 |
第2章 区域地质特征 |
2.1 构造特征 |
2.2 地层特征 |
2.2.1 地层划分与对比 |
2.2.2 四川盆地须家河组地层特征 |
2.2.3 研究区须二段地层特征 |
2.3 沉积特征 |
2.3.1 区域沉积背景 |
2.3.2 主要沉积微相识别标志 |
2.3.3 地震相特征 |
2.3.4 主要沉积微相类型 |
2.3.5 沉积相分布特征 |
第3章 须二段致密砂岩储集性特征 |
3.1 储集空间特征 |
3.1.1 储集空间类型 |
3.1.2 储集空间组成差异性分布特征 |
3.2 孔隙结构特征 |
3.2.1 孔隙喉道特征 |
3.2.2 孔隙结构差异性分析 |
3.3 物性特征 |
3.3.1 孔渗分布特征 |
3.3.2 孔渗相关关系 |
3.3.3 物性差异性分布特征 |
3.4 储集类型 |
3.5 砂岩储集性分类评价 |
3.6 本文孔隙型储层含义 |
第4章 须二段孔隙型储层岩石学特征和成岩作用特征 |
4.1 岩石学特征 |
4.1.1 岩石类型与碎屑成分特征 |
4.1.2 填隙物特征 |
4.1.3 岩石结构特征 |
4.1.4 岩石学特征差异性分布特征 |
4.2 成岩作用特征 |
4.2.1 成岩作用类型 |
4.2.2 成岩作用差异性分析 |
4.3 孔隙型储层类型 |
第5章 须二段孔隙型储层孔隙演化特征 |
5.1 孔隙演化定时分析 |
5.1.1 成岩阶段划分 |
5.1.2 自生矿物形成时期分析 |
5.1.3 油气充注时期分析 |
5.1.4 溶蚀时期分析 |
5.1.5 成岩演化序列差异 |
5.2 孔隙演化定量分析 |
5.2.1 压实作用对孔隙的定量影响特征 |
5.2.2 自生矿物对孔隙的定量影响特征 |
5.2.3 溶蚀作用对孔隙的定量影响特征 |
5.3 孔隙定时定量演化特征 |
5.3.1 孔隙演化模型 |
5.3.2 孔隙定时定量演化 |
第6章 须二段孔隙型储层形成机理 |
6.1 早期烃类充注对储层孔隙的影响 |
6.2 有利埋藏方式对储层孔隙的影响 |
6.3 溶蚀作用机理及其对储层孔隙的影响 |
6.3.1 岩石矿物地球化学特征 |
6.3.2 不同阶段溶蚀作用机理 |
6.3.3 溶蚀作用对储层孔隙的影响 |
6.4 绿泥石形成机理及其对储层孔隙的影响 |
6.4.1 绿泥石微观附存状态和地球化学特征 |
6.4.2 绿泥石形成机理 |
6.4.3 绿泥石对储层孔隙的影响 |
6.5 自生石英形成机理及其对储层孔隙的影响 |
6.5.1 自生石英的微观附存状态和地球化学特征 |
6.5.2 多期次自生石英形成机理 |
6.5.3 自生石英对储层孔隙的影响 |
6.6 成岩流体演化 |
第7章 须二段孔隙型储层主控因素及勘探方向 |
7.1 孔隙型储层主控因素分析 |
7.1.1 碎屑成分 |
7.1.2 沉积因素 |
7.1.3 成岩作用 |
7.1.4 古构造 |
7.1.5 裂缝 |
7.2 孔隙型储层发育模式 |
7.3 孔隙型储层主控因素差异 |
7.4 孔隙型储层勘探方向 |
结论 |
致谢 |
参考文献 |
攻读学位期间取得学术成果 |
(9)泌阳凹陷油气成藏过程及勘探潜力分析(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题的来源、目的和意义 |
1.1.1 选题的来源 |
1.1.2 选题目的 |
1.1.3 选题意义 |
1.2 国内外研究现状和发展趋势 |
1.2.1 异常超压研究 |
1.2.2 成藏过程分析 |
1.2.3 研究区研究现状 |
1.3 研究内容和技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究方法及技术路线 |
1.4 完成工作量及创新点 |
1.4.1 完成工作量 |
1.4.2 创新点 |
第二章 区域地质概况 |
2.1 泌阳凹陷概况 |
2.2 构造特征及构造演化 |
2.2.1 构造特征 |
2.2.2 构造演化 |
2.3 地层特征及沉积充填演化 |
2.3.1 地层特征 |
2.3.2 沉积充填演化 |
2.4 石油地质特征 |
2.4.1 烃源岩 |
2.4.2 储集层 |
2.4.3 圈闭(油气藏)及油气分布 |
第三章 流体包裹体系统分析 |
3.1 基本原理 |
3.2 成岩作用及成岩序次 |
3.2.1 成岩作用环境条件 |
3.2.2 成岩作用过程 |
3.3 烃源岩包裹体分析 |
3.4 砂岩储层包裹体分析 |
3.4.1 流体包裹体岩相学特征 |
3.4.2 单个油包裹体显微荧光光谱分析 |
3.4.3 流体包裹体均一温度及盐度特征 |
第四章 成藏期次及成藏时期划分 |
4.1 单井埋藏史和热史模拟 |
4.1.1 模型及参数选择 |
4.1.2 埋藏史和热史模拟结果分析 |
4.2 油气充注年龄确定 |
4.2.1 流体包裹体均一温度及盐度 |
4.2.2 油气充注年龄确定 |
第五章 油气成藏动力分析 |
5.1 现今地层压力刻画 |
5.2 古流体压力模拟 |
5.2.1 盆地模拟法 |
5.2.2 流体包裹体法 |
第六章 油气成藏过程及成藏模式 |
6.1 不同成藏动力系统油源对比 |
6.1.1 南部陡坡带油源对比 |
6.1.2 中央深凹区油源对比 |
6.1.3 北部缓坡带油源对比 |
6.1.4 大仓房组油源分析 |
6.2 烃源岩生烃过程分析 |
6.2.1 埋藏史及热史分析 |
6.2.2 有机质成熟及生烃分析 |
6.3 古流体压力演化分析 |
6.3.1 现今地层压力特征 |
6.3.2 古流体压力演化过程 |
6.4 油气充注过程分析 |
6.4.1 不同构造单元原油特点及输导关系 |
6.4.2 油气充注过程 |
6.5 源-汇耦合关系 |
6.5.1 烃源岩条件 |
6.5.2 储层条件 |
6.5.3 圈闭条件 |
6.5.4 运移输导体系 |
6.5.5 充注成藏分析 |
6.5.6 成藏要素耦合联动演化 |
6.5.7 成藏模式 |
6.6 勘探潜力分析 |
6.6.1 泌阳凹陷油气分布特点 |
6.6.2 有利潜力区分析 |
第七章 结论 |
致谢 |
参考文献 |
(10)新中国成立以来中国矿床学研究若干重要进展(论文提纲范文)
1 引言 |
2 中国矿床学研究进展概述 |
2.1 新中国成立初期至改革开放以前 |
2.2 改革开放早期至20世纪末 |
2.3 21世纪初至今 |
3 若干重要矿床类型的研究进展 |
3.1 岩浆矿床 |
3.2 斑岩型矿床 |
3.3 矽卡岩型矿床 |
3.4 玢岩型铁矿床 |
3.5 火山成因块状硫化物矿床(VHMS矿床) |
3.6 铁氧化物铜金矿床 |
3.7 赋存于沉积岩中的铅锌矿床 |
3.8 造山型金矿床 |
3.9 卡林型金矿床 |
3.1 0 克拉通破坏型金矿床 |
3.1 1 沉积矿床 |
3.1 2 铀矿床 |
3.1 3 稀土元素矿床 |
3.1 4 稀有和稀散金属元素矿床 |
3.1 5 与花岗岩有关的钨锡矿床 |
3.16超大型矿床 |
4 矿床模式与成矿理论 |
4.1 若干矿床类型的成矿模式 |
4.1.1 大塘坡式锰矿床成矿模式 |
4.1.2 大冶式矽卡岩型铁矿床成矿模式 |
4.1.3 铜陵狮子山式铜矿床成矿模式 |
4.1.4 玢岩型铁矿床成矿模式 |
4.1.5 康滇成矿带IOCG矿床成矿模式 |
4.1.6 石英脉型钨矿床模式 |
4.2 若干成矿理论 |
4.2.1 大陆碰撞成矿理论 |
4.2.2 分散元素成矿理论 |
4.2.3 成矿系列与成矿系统 |
4.3 重大地质事件与成矿 |
4.3.1 地幔柱与岩浆矿床 |
4.3.2 板块俯冲和造山与华南低温矿床 |
4.3.3 陆陆碰撞与斑岩铜矿 |
4.3.4 哥伦比亚超大陆裂解与IOCG矿床 |
5 矿床学研究方法 |
5.1 元素地球化学 |
5.2 同位素地球化学 |
5.3 流体包裹体研究 |
5.4 成矿年代学 |
5.5 矿田构造 |
5.6 成矿实验 |
6 找矿重大发现 |
7 结束语 |
四、氦、氩同位素分析在天然气成藏规律研究中的应用——以川西盆地中部天然气He、Ar同位素组成分析为例(论文参考文献)
- [1]南华北盆地山西组砂岩的气体来源、成岩阶段与成藏过程研究[J]. 刘瑞,郭少斌,屈凯旋,郭予斌. 石油科学通报, 2021(03)
- [2]渤中凹陷深层油气运聚成藏机制[D]. 赵子龙. 西北大学, 2020(12)
- [3]滇东煤层气合采井气水地球化学特征及气层层源判识[D]. 杜明洋. 中国矿业大学, 2020
- [4]川西坳陷北段复杂地质构造背景下深层海相油气成藏过程研究[D]. 梁霄. 成都理工大学, 2020
- [5]沁水盆地山西组致密砂岩气储层评价与成藏研究[D]. 殷亮亮. 中国地质大学(北京), 2020(08)
- [6]黔西地区龙潭组致密砂岩储层评价[D]. 刘曾勤. 中国地质大学(北京), 2020(08)
- [7]塔里木盆地塔中地区奥陶系碳酸盐盐岩油气成藏模式研究[D]. 周肖肖. 中国石油大学(北京), 2020
- [8]四川盆地中西部上三叠统须家河组二段孔隙型致密砂岩储层特征与形成机理[D]. 章顺利. 成都理工大学, 2020(04)
- [9]泌阳凹陷油气成藏过程及勘探潜力分析[D]. 张鑫. 中国地质大学, 2020(03)
- [10]新中国成立以来中国矿床学研究若干重要进展[J]. 李建威,赵新福,邓晓东,谭俊,胡浩,张东阳,李占轲,李欢,荣辉,杨梅珍,曹康,靳晓野,隋吉祥,俎波,昌佳,吴亚飞,文广,赵少瑞. 中国科学:地球科学, 2019(11)