对射变换性质论文

对射变换性质论文

问:射影几何学的直射变换与对射变换,射影群
  1. 答:考虑一个平面上的二维射影变换。平面既是点场的底,又是线场的底,因此,它上面的一个射影变换可以把点变成点(或线变成线),也可以把点变成线(或线变成点),前一种叫做直射变换,后一种叫做对射变换。
    直射变换的逆变换和它们的积(即两个直射变换接连作用所形成的变换)都是直射变换。因此,平面上一切直射变换构成群,叫做平面直射群。直射变换的特征是,它把共线的点变成共线的点,因而可以说,也把直线变成直线。一个直射变换可以用关于点坐标的线性变换(2)代表。如果它把直线(□)变成(□),则通过关联条件可得
    □ (4)式中□□是□□在方阵(□□)中的余因子,□是比例常数。可以认为,(2)和(4)代表着同一个直射变换,它们的区别只是在于:一个用了点坐标,一个用了线坐标。
    与此类似,对射变换把共点的直线变成共线的点,把共线的点变成共点的直线,即把线变成点,把点变成线。两个对射变换之积是一个直射变换。对射变换不构成群,但是平面上一切直射变换和对射变换在一起构成群,叫做射影群。直射群是射影群的子群。但有时射影群这个名词也用来指直射群。
    由于平面对射变换把点变成线,把线变成点,而又保持关联关系,它就体现了平面上的对偶原理。
    同样,空间也有直射变换和对射变换,前者把点变成点,面变成面,后者把点变成面,面变成点;它们都把直线变成直线。空间一切直射变换构成直射群,一切直射变换和对射变换构成射影群。空间对射变换体现空间对偶原理。
    直线上的一切点变点的射影变换构成直线上的射影群。
    其他基本形里都有各自的射影群。
问:拉氏变换常用公式是什么?
  1. 答:拉普拉斯变换是对于t>=0函数值不为零的连续时间函数x(t)通过关系式:
    (式中-st为自然对数底e的指数)变换为复变量s的函数X(s)。它也是时间函数x(t)的“复频域”表示方式。
    拉普拉斯变换在许多工程技术和科学研究领域中有着广泛的应用,特别是在力学系统、电学系统、自动控制系统、可靠性系统以及随机服务系统等系统科学中都起着重要作用。
    拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s) 组合常印制成表,方便查阅。拉氏变换和傅立叶变换有关,不过傅立叶变换将一个函数或是信号表示为许多弦波的叠加,属于「频域变换」。
    而拉氏变换则是将一个函数表示为许多矩的叠加,属于「时域变换」。拉氏变换的好处就是能够将复杂的积分与微分的问题,变换成比较容易计算的代数方法,为什么要进行变换?因为很多时候频域变换比时域变换直观得多。因此,拉氏变换较多被用于解决:
    (1).常数系数的线性微分或积分方程式。
    (2).分析线性非时变系统的输入输出信号。
    实务上,拉氏变换在物理及工程上常用来分析线性非时变系统,可用来分析电子电路、谐振子、光学仪器及机械设备,在这些分析中,拉氏变换可以作时域和频域之间的转换,在时域中输入和输出都是时间的函数,在频域中输入和输出则是复变角频率的函数。
问:x的拉氏变换怎么计算
  1. 答:拉氏变换则是将一个函数表示为许多矩的叠加,属于时域变换。
    拉氏变换在大部份的应用中都是对射的,最常见的f(t)和F(s) 组合常印制成表,方便查阅。拉氏变换和傅立叶变换有关,不过傅立叶变换将一个函数或是信号表示为许多弦波的叠加,属于「频域变换」。
    而拉氏变换则是将一个函数表示为许多矩的叠加,属于「时域变换」。拉氏变换的好处就是能够将复杂的积分与微分的问题,变换成比较容易计算的代数方法,为什么要进行变换?因为很多时候频域变换比时域变换直观得多。
对射变换性质论文
下载Doc文档

猜你喜欢